Generalized Hamiltonian equations for convex problems of Lagrange
نویسندگان
چکیده
منابع مشابه
Generalized Euler–Lagrange equations for fuzzy fractional variational calculus
This paper presents the necessary optimality conditions of Euler–Lagrange type for variational problems with natural boundary conditions and problems with holonomic constraints where the fuzzy fractional derivative is described in the combined Caputo sense. The new results are illustrated by computing the extremals of two fuzzy variational problems. AMS subject classifications: 65D10, 92C45
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
On generalized Hermite-Hadamard inequality for generalized convex function
In this paper, a new inequality for generalized convex functions which is related to the left side of generalized Hermite-Hadamard type inequality is obtained. Some applications for some generalized special means are also given.
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملGeneralized Coordinates , Lagrange ’ s Equations , and Constraints CEE 541
The set of coordinates used to describe the motion of a dynamic system is not unique. For example, consider an elastic pendulum (a mass on the end of a spring). The position of the mass at any point in time may be expressed in Cartesian coordinates (x(t), y(t)) or in terms of the angle of the pendulum and the stretch of the spring (θ(t), u(t)). Of course, these two coordinate systems are relate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1970
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1970.33.411